

Using Machine Learning in the delivery of ads

Ruth Garcia

NDR Conference – June 07, 2018

Iasi, Romania

What is Skyscanner?

Skyscanner is a leading **global travel search site** offering a comprehensive and **free** flight search service as well as online comparisons for hotels, car hire and **now trains**.

Data Science at Skyscanner

- 1. Decision Science: Ensuring we have the right data; insights and information to make the most impactful, scientific decisions in every aspect of our operations.
- 2. Building Data Products: Leveraging our vast wealth of data to build more contextual, relevant products for Travellers and Travel Suppliers (our Partners)

Machine Learning at Skyscanner

- Destination recommendations
- Itinerary mashups
- Advertising

Mashups

Mashups. A better blend of flights for your journey, offering more choice and savings.

Advertising

Recommendations

Search Everywhere >

Ads at Skyscanner

Not always annoying ads

Advertising schemes

Action

Brand awareness Traffic

Advertising schemes

Action

Advertising Schemes

Brand awareness

Action

Ads at Skyscanner

en-GB £ GBP Log in

Popular destinations

June 2018 Flying from London Heathrow

Ads at Skyscanner

DoubleClick for Publishers

Make sure, ads are delivered

No need to worry about how ads are delivered

Delivery of Ads

Technical difficulties

Data ownership

Skyscanner Ads Manager

Click prediction algorithm

Click prediction algorithm

Cloud services and tools at Skyscanner

Languages

Overview of an Advertising System

Expectation vs. reality

Expectation

Tensorfiow

User history,

Features:

- User features,
- Route features ,
- Ad features with, colors, text

- Optimization technique
- Embeddings
- Crossed columns
- Hashing

Flexible but with the risk of not being fast enough.

Expectation vs. reality

Reality

Features:

- User history,
- User features,
- Route features ,
- Ad features with, colors, text

Tensorfiow

- Optimization technique
- Embeddings
- Crossed columns
- Hashing

Not flexible but fast and easier to implement.

Challenges in building the model

Goal: model, that estimates the likelihood of whether an impression will result in a click or not.

Challenges: Which model to use?

Model Possibilities (easy to read in node.js):

- Logistic regression
- Random Forest : gets lost
- Neural networks: too slow hard to put it in json

Solvers:

- Logistic regression: Liblinear, sag Train all data at once
- SGDClassifier

Train data in batches
Saves memory

Gridsearch for

hyperparameteres

Challenges: Categorical values

Categorical values:

- One hot encoding
- One hot encoding grouping less frequent features
- Hashing trick

One hot encoding

Creatives		C1	C2	C3
C1		1	0	0
C2		0	1	0
C3	,	0	0	1

- One hot encoding grouping
- Less frequent features

Creatives	C1	C2	C 3	C4
C1	1	0	0	0
C2	0	1	0	0
C3	0	0	1	0
C4	0	0	0	1

Challenges: Categorical values

Hashing Trick: Same hashing function in training, testing and production

id	features
123	creative1, advertiser2, mobile, etc.
321	creative2, advertiser4, mobile, etc.

id	Feat_1	Feat_2	Feat_3	 Feat_k
123	1	0	1	 0
321	1	0	0	 1

We gain

feature space reduction (k is determined upfront)

new categories n-grams are assigned to existing bins

Machine Learning Performance

AUC: if caring about ranking

Log-Loss: if caring about the value of CTR

Other metrics:

Precision at 1: based on target groups.

Mean Reciprocal Rank

Challenges: How to monitor performance?

Updating model based on different Sampling methods.

click-prediction

to	algorithm	sampling	days
2018-05-10	logistic_regression_balanced	random	7
2018-05-11	logistic_regression	undersampling	6
2018-05-12	logistic_regression_balanced	not-sampled	5
2018-05-13	logistic_regression	undersampling	7
2018-05-14	logistic_regression_balanced	not-sampled	7
2018-05-15	logistic_regression	undersampling	3
2018-05-16	logistic_regression_balanced	not-sampled	6
2018-05-17	logistic_regression_balanced	not-sampled	7
2018-05-18	logistic_regression_balanced	not-sampled	7
2018-05-19	logistic_regression_balanced	not-sampled	7
2018-05-20	logistic_regression_balanced	not-sampled	7
2018-05-21	logistic_regression_balanced	undersampling	7
2018-05-22	logistic_regression_balanced	undersampling	5
2018-05-23	logistic_regression_balanced	not-sampled	3
2018-05-24	logistic_regression_balanced	not-sampled	7
2018-05-25	logistic_regression	random	7
2018-05-26	logistic_regression	random	7
2018-05-27	logistic_regression_balanced	random	5

The road ahead: Balancing exploitation and exploration

The road even further ahead: quality

Conclusions

- 1. Machine Learning can bring many benefits to the product the challenge is to prove it
- 2. Bringing ML into production could hard at the beginning
- 3. Cooperation between data scientists and engineers is crucial

Thank you @ruthygarcia

Questions?

