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Microsoft Translator launching Neural Network
based translations for all its speech languages
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Microsoft Translator is now powering all speech translation through state-of-the-art neural networks.

All speech translation apps that use this service, such as Skype Translator and the Microsoft Translator app for mobile
devices, are now using neural network technology. Furthermore, the technology is available to all developers and end-users
who want to use the Microsoft Translator speech API to integrate the technology into their favorite apps and services.

In addition to the nine languages supported by the Microsoft Translator speech API, namely Arabic, Chinese Mandarin,
English, French, German, Italian, Brazilian Portuguese, Russian and Spanish, neural networks also power Japanese and
Korean text translations. These eleven languages together represent more than 80% of the translations performed daily by
Microsoft Translator.

Neural network technology has been used for the last few years in many artificial intelligence scenarios, such as speech and
image processing. Many of these capabilities are available through Microsoft Cognitive services. Neural networks are making
in-roads into the machine translation industry, providing major advances in translation quality over the existing industry-
standard Statistical Machine Translation (SMT) technology. Because of how the technology functions, neural networks better
capture the context of full sentences before translating them, providing much higher quality and more human-sounding
output.

Image from https://blogs.msdn.microsoft.com/translation/
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Higher quality neural translations for a
bunch more languages

Barak Turovsky
Product Lead (and proud
Russian speaker), Google
Translate

Published Mar 6,2017

Last November, people from Brazil to Turkey to Japan discovered that Google
Translate for their language was suddenly more accurate and easier to

That's because we neural machine translation—using
deep neural networks to translate entire sentences, rather than just phrases—for
eight languages overall. Over the next couple of weeks, these improvements are
coming to Google Translate in many more languages, starting right now with
Hindi, Russian and Vietnamese.

Neural translation is a lot better than our previous technology, because we
translate whole sentences at a time, instead of pieces of a sentence. (Of course

Image from https://www.blog.google/products/translate
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Facebook finishes its move to neural machine
translation

John Mannes (@JohnMannes,
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Facebook announced this morning that it had completed its move to neural machine translation —

Image from
https://techcrunch.com/2017/08/03/facebook-finishes-its-move-to-neural-machine-translation/
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Linguee’s Founder Launches Deepl in
Attempt to Challenge Google Translate

by Florian Faes on August 30, 2017
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Barely two years after bursting into the
translation tech scene, neural machine
translation (NMT) is everything the MT
community is talking about. Microsoft,
Google, Facebook, and other large
technology companies have all transitioned
to NMT, as did the European Patent Office
and the World Intellectual Property

Organization. Even end-buyers are starting to build their own systems based on open-

source models.

Image from https:
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What is a function?

A function maps a set of inputs (numbers) to an output (number)?

sum(2,5,4) — 11

1This introduction to neural network and machine translation is based on: Kelleher (2016)
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What is a WEIGHTEDSUM function?

WEIGHTEDSUM(lxl, X, ... ’Xml’ lWl’ Wo, ..., W’"D

-~

Input Numbers W;;hts
=(0axw)+ (X w) 4+ 4 (Xn X Wp)

WEIGHTEDSUM([3, 9], [—3,1])
=3x-3)4+(9x1)
=-9+9
=0
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What is an ACTIVATION function?

An ACTIVATION function takes the output of our
WEIGHTEDSUM function and applies another mapping to it.



What is an ACTIVATION function?
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What is an ACTIVATION function?

ACTIVATION =
LOGISTIC(WEIGHTEDSUM(([x1, X2, . - -, Xm], [Wi1, Wa, . .., Wp]))

~

~
Input Numbers Weights

LOGISTIC(WEIGHTEDSUM([3, 9], [—3,1]))
= LOGISTIC((3 X —3) + (9 x 1))
= LOGISTIC(—9 + 9)
= LOGISTIC(0)

=0.5
NDR

12 /57



What is a NEURON?

The simple list of operations that we have just described defines the
fundamental building block of a neural network: the NEURON.

NEURON =
ACTIVATION(WEIGHTEDSUM(([X1, X2, - - - ; Xpm], [W1, W2, . . ., W] ))

TV TV
Input Numbers Weights
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What is a NEURON?

Activation N
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https://github.com/MartinThoma

What is a NEURAL NETWORK?




Training a NEURAL NETWORK

» We train a neural network by iteratively updating the weights
» We start by randomly assigning weights to each edge
» We then show the network examples of inputs and expected

outputs and update the weights using BACKPROPOGATION SO
that the network outputs match the expected outputs

» We keep updating the weights until the network is working the
way we want
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Word Embeddings
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Word Embeddings

» Language is sequential and has lots of words.

NDR
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“a word is characteriezed by the company it keeps”

— Firth, 1957
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Word Embeddings

1. Train a network to predict the word that is missing
from the middle of an n-gram (or predict the n-gram
from the word)

2. Use the trained network weights to represent the word
In vector space.



Word Embeddings

Each word is represented by a vector of numbers that positions the
word in a multi-dimensional space, e.g.:

king =< 55, —10,176,27 >
man =< 10,79, 150,83 >

woman =< 15,774,159, 106 >

queen =< 60, —15, 185,50 >

NDR



Word Embeddings

MAN

WOMAN

/’

UNCLE
QUEEN

KING

AUNT

KINGS

QUEENS

N\

N\

KING

QUEEN

vec(King) — vec(Man) + vec(Woman) ~ vec(Queen)

2 Linguistic Regularities in

Continuous Space Word Representations Mikolov et al. (2013)

2
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Language Models
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Language Models

» Language is sequential and has lots of words.

NDR
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» A language model can compute:
1. the probability of an upcoming symbol:

P(wp|wa, ..., w,_1)
2. the probability for a sequence of symbols®

P(wi, ..., w,)

BT B

3 NDR
We can go from 1. to 2. using the Chain Rule of Probability P(wy, wyp, w3) = P(wy)P(wa|wq)P(w3|wy, wy)
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» Language models are useful for machine translation
because they help with:

1. word ordering
P(Yes | can help you) > P(Help you | can yes)*
2. word choice

P(Feel the Force) > P(Eat the Force)

YinYe)
4 NDR
Unless its Yoda that speaking
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Neural Language Models
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Recurrent Neural Networks

A particular type of neural network that is useful for
processing sequential data (such as, language) is a
RECURRENT NEURAL NETWORK.

NDR
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Recurrent Neural Networks

Using an RNN we process our sequential data one input at
a time.

In an RNN the outputs of some of the neurons for one
input are feed back into the network as part the next
input.
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Simple Feed-Forward Network
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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h: = (W - heo1) + (Wan - x¢))

Yt = Qb(why : ht)

Figure: Recurrent Neural Network NDR
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Recurrent Neural Networks

Output: y1 y2 y3 Yt Yitl
| J | J | J | | J
A A A A A
h; hy hs — — h; hepp
Input: X1 X2 X3 Xt Xt41

Figure: RNN Unrolled Through Time

NDR

43 /57



Hallucinating Text

Output: {*Wordg} {*Word;.;}

] Word4 : \w
N i
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Input: | Word;

fﬁ

NDR



Hallucinating Shakespeare

PANDARUS: Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed, And who is
but a chain and subjects of his death, | should not sleep.

Second Senator: They are away this miseries, produced upon my
soul, Breaking and strongly should be buried, when | perish The
earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

From: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Neural Machine Translation
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Neural Machine Translation

1. RNN Encoders
2. RNN Language Models

47 /57



Encoders

cnang | 1w e
T r r

Input: | Word; Word, Word,, < eos >

Figure: Using an RNN to Generate an Encoding of a Word Sequence

NDR
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Language Models

Output: [* Wordg] [* Word3] [* Word4]
i ! i
Sl

Input: | Word; Word> Words Word;

Figure: RNN Language Model Unrolled Through Time



Decoder

Output: [* Wordg]

L N\

)

Input: | Word;

Figure: Using an RNN Language Model to Generate (Hallucinate) a Word
Sequence



Encoder-Decoder Architecture

Encoder \ \ \
h h

Decoder

Source; Source, e < eos >

Figure: Sequence to Sequence Translation using an Encoder-Decoder Architecture
NDR
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Neural Machine Translation

Life is beautiful] [< eos >]
Encoder ~ T ’\‘ T ’\

P NG R NV D N
[THTHTHT%ﬁ,fT{ﬂ*“]

belle est vie La < eos >

Figure: Example Translation using an Encoder-Decoder Architecture
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Beyond NMT: Image Annotation
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Image Annotation

A
bird
flying
over
>la
body
of
water
1. Input 2. Convolutional 3, RNN with attention 4. Word by
Image Feature Extraction over the image word
generation)

14x14 Feature Map

Image from Image from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention Xu

et al. (2015) NDR
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Thank you for your attention
john.d.kelleher@dit.ie
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