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Challenges in Power Systems

Particular difficulties

 Too much information (growing and growing)
* Large interconnected system
* Many assets and sensors

« Interaction with other systems and environments

° Need to act fast

Fast flow of information
« Prevent cascading failures
« Corrective action in seconds

«  Weather forecast

«  Consumer response behaviour

* Agents behaviour (market and generation)
* Uncertainty

* Uncertainty in inputs, algorithm parametrization, change in behaviours

is not enough for risk based decisions

* Meaning and interpretability

« Operators carry the , need a justification for the decision

«  We need AI to and aggregate the knowledge of operators (imitation learning)




ML applications in Power Systems

High value tools

« Renewable generation forecast (essential for control)
«  Wind generation forecast
Solar generation forecast
* Hydro generation forecast

 Electricity price forecast (essential for profit)
« Short term forecast (spot prices, day ahead)
* Mid and long term forecast (futures, day-to-years ahead)

« Load forecast
« Short term (consumer, substation, system level)
« Long term (spatial load forecast)

* Generation dispatch optimization (profiling agent strategies)

» Consumer profiling and demand response

« State estimation and system control (deal with huge and uncertain data)
* Asset management (health and risk of failure, transformers, protections)

* Network fault risk prediction



ML applications in Power systems

Renewable generation forecast (wind, solar, hydro)

. Forecast hourly generation for ahead, for each generation plant
Objective // target Challenges: , long horizon, high resolution, uncertainty modelling
Data // Features Algorithms
Chronological information (hour, month) Classical Supervised Learning
Future weather forecast (many features) Regression (function adaptation) o
Historical weather data (many features) Kernel Density Es’nrpa‘ruon (pr:obabulus’nc, parametrization)
Generation (engineering) Neural Networks (time series problem)

Conventional (FFNN, RBF, ensemble)

Availability plan (strategy, reliability) Recurrent Neural Networks (LSTM, GRU)

Historical generation (himself, neighbour) Deep Learning (> maybe not)

Real time generation (himself, neighbour) Problem based on physics (meteorology, engineering)
Simulation time series (new plants) Week link with past, historical don't repeats

Highly process, high uncertainty



ML applications in Power systems

Electricity price forecast (spot, futures)

Objective // target
Challenges:

Data // Features

Chronological information (hour, month)

Renewable forecast (short horizon)

Consumption forecast (short and long term)
(renewables, thermal)

Availability plan (strategy, reliability)

Generation (engineering)

Agent bidding strategies (historical)

Prices of oil, gas, coal (different markets)

CO, prices (loop problem)

Market

SPOT: Forecast hourly prices, for , for regional markets
FUTURES: daily, monthly, annual prices, for year(s) ahead, for markets

, long horizon, uncertainty, identify features

Algorithms

pre-processing, clearing, (80%)

Usual Classical Tools (function adaptation)
Supervised Learning (Regression, KDE)
Conventional NN (FFNN, RBF, ensemble)
Dimension reduction (PCA, LSA, )
Dimensionality Reduction (complementary tool)
Conventional (PCA)
Unsupervised Learning (clustering, pattern search)
NN encoders (AE, Variational AE, Denoising AE, SAE)
Reinforcement Lear'ning (behaviour and environment adaptation)
TD (Temporal Difference), SARSA,



ML applications in Power systems

Generation dispatch optimization and forecast

Identify patterns in hourly generation, for portfolio of gerneration units

Objective // target Forecast hourly generation, for day ahead, for generation agents
Data // Features Algorithms
Chronological information (hour, month) Clustering (day dispatch profiling)

K-mean, Fuzzy c-mean, DBSCAN
“atter search (associated rule learning)
“sunday + summer + high renewables = pattern X"
Convolutional Neural Networks
“Transform generation data in motion 2D images and
process with image CNN algorithms”

Renewable forecast (short horizon)
Consumption forecast (short and long term)
Generation i< (renewables, thermal)
Availability plan (strategy, reliability)

Daily generation natterns (historical)
Market bidding actions (recent data)



ML applications in Power systems

Network fault risk forecast

Forecast, for 7 days ahead, the risk of outage in the networlk lines, caused
by meteorological events, The prediction of number and location of
outages are used to plan preventive and corrective actions.

Objective // target

Data // Features

Meteorological forecast (7 days) Algorithms

Historical meteorology (4 years)
wind speed, direction and gust
temperature, hourly and lag average
precipitation and humidity
Fault events (4 years, 80000 km lines, 12000 events)
fault duration, location and cquipment SVM, decision trees (yes, no)
Fault cauee (storm, wm.d, rain, other) , Neural Networks (function adaptation)
Geographic characteristics (100 m resolution) Conventional (FFNN, RBF, ensemble)
orography, vegetation, urban coverage Recurrent Neural Networks (LSTM, GRU)
Power line characteristics
age, length, type, voltage

Classical Supervised Learning (CSL)
Regression (function adaptation)
Kernel Density Estimation (good for rare events)

Classification (also a CSL)
Naive Bayes inference (probability index)



Implementation Example

Network fault risk forecast

Bayesian Inference.
V  Explanatory Event occurred

Explanatory Event V (wind speed > 10m/s )
Number of _ = , :
occUrrences 174 74 sum V. Explanatory event con't occurred (wind <10m/s).
w E Ex E.—F E; E  Fault occurred independently of V
g T — Lk
o — — T .
E E Vi — Ex KTE'I; E_KVK Ve — Ep E  Fault didn't occurred independently of V
3 Er  Total occurrences of faulis
L sum VK VT — VK VT
Vr  Total occurrences of explanatory event
Bayes Teoreme _ Eg _ Vk
Y P(EIV) = V_K P(V) = V_T E, Kernel density estimation for fault
P(EIV) = P(V|E) - P(E) occurrence E, done for biniinV
P(V) P(V|E) = E P(E) = Er V, Kernel density estimation for explanatory

E; Vr variable V, done for each biniinV



Implementation Example

Network fault risk forecast

The Fislc Tndex 1R is the conditional probability P(E|V) normalized by the probability of
occurrence of events P(E), in this modelling computed by the normalized density functions

Simple example, V, e E for a univariate (wind)

« Var_KDE . Event_KDE

_P(EIV) Ex; Vr

RI; = — KL oo
P(E) Vi Er 0

Vo = 'ZK H V. —V)) = o N BN

ki nV-IHIk( (Ve = V) e SRS T

¥ g R * - : : : E A B

nE /m;»/ SERIREE

1 - 0 g5 10 15 20 25

EKi = nE - |H| ' ZK(H 1(Ek - Vl)) velocidade (m/s) _
k ni

_PEV) 1 NEa Ve

IR: = - . ) 2. =
‘TOPE) LV By

ni ni
VTZZVKi ETZZEKi
i i Average Risk Index is 1
IR=1 is the reference value, normal situation



Implementation Example

Network fault risk forecast

Train a FFNN
RT is the target

Explqnafopy Variables sum-> 4218423 1292055
Vh Vh3 Vhé T(2Q) L(km) VK EK IR _

VT ET

—~ 10 12 4 15 27 | 40,04508 157,3597] 5,175265
o 2 6 8 15 27 | 406,2767 30,76772|0,009738
a 10 6 8 15 27 | 336,463 473,2143] 1,852289 )
@) 2 12 8 15 27 | 20,50657 6,053949| 0,388807 IHPUT variables
8 10 12 8 15 27 | 127,5661 805,5669| 8,316766 (weather forecast)
N 2 6 4 25 27 | 400,7429 6,959955| 0,022873
z 10 6 4 25 27 | 111,3828 41,24414]0,487677 for 7 days ahead
+ 2 12 4 25 27 | 6,786934 0,428144| 0,083081
3 10 12 4 25 27 | 9,168155 36,97147| 5,31096
it 2 6 8 25 27 | 162,6946 5,006449|0,040527
3 10 6 8 25 27 | 78,62808 96,63353|1,618577 RT forecast for 7 days
) 2 12 8 25 27 5,468109 1,044887]0,251664 ahead, for asset X
3 10 12 8 25 27 | 19,44205 202,5768] 13,72195
Y 2 6 4 15 53 |792,1719 29,41837| 0,081005 A fault rat 1
g 10 6 4 15 53 | 287,2261 175,6224] 1,333735 ve;ggig:; ;a € ‘
£ 2 12 4 15 53 |17,52777 1,769965 | 0,220268 —
= 10 12 4 15 s3 | 40,04508 117,959 | 6,42533 \
2 6 8 15 s3 | 406,2767 23,23488|0,124748 Geographical -
10 6 8 15 53 336,463 363,608 | 2,357271 aggregation Probability of
2 12 8 15 53 | 20,50657 4,681737|0,497998 _ fault for

asset X, ahead



110-15] Eventos

o 105/03/1821:00  96% 4% 0% 0% 0O
Implementation Example R ma T E—m— R
Network fault risk forecast 11T

06/03/1821:00  98% . 2% 0% 0% 0
Results 6 month testing ososnsaie0  sex |  on o 0
09/03/1800:00 | 98% || 2% 0% 0% 0
09/03/1803:00 | 98% || 2% 0% 0% 1

30 12
09/03/1806:00 | 91% | || 8% 0% [ 1% 1
. ) 09/03/1809:00 | 94% || 6% 0% 0% 5
09/03/1812:00 | 90% | || 8% 0% [ 2% 1
09/03/1815:00 | 80% | | | 20% 0% 0% 4
£ 08 09/03/1818:00 | 72%| | |28% 0% 0% 5
8 Region A 09/03/1821:00  79% | || 12% [ 4% I 5% 3
als 06 10/03/1800:00 | 54% || 9% [ | 17% [ | 20% 15
8 10/03/1803:00 | 71% | | 23% | 3% . 3% 0
210 04 10/03/18 06:00 65% | | 20% [ 7% 1 8% 0
10/03/1809:00 | 74% | | | 18% | 4% 5% 0
S 02 10/03/1812:00 | 98% || 1% 0% 1% 0
| l' ‘ 10/03/1815:00 | 67% | 4% [ 7% L 22% 2
, |y | l | L, 10/03/1818:00  66% | 14% || 9% || 10% 2
. 10/03/1821:00 | 50% [ 123% [ 11% Ll16% 8

—— — = e
Fault occurrence | Risk Index 11/03/1800:00 | 57% || 12% 0% L 131% 7
11/03/1803:00 | 41% | 50% [ 2% b 7% 3
. 11/03/1806:00 | 80% | | 4% | 1% C14% 5
11/03/18 09:00 35% [ 49% | 3% Cl13% 4
. 11/03/1812:00  77% | [ 16% 1% H_ 6% 3
s 11/03/1815:00 | | 18% | 60% 0% L 22% 2
£ 11/03/1818:00 | 57% | | 20% | 12% || 11% 0
g Re ion B 11/03/1821:00 | 66% | | 21% || 6% 7% 0
3 g

£1s 12/03/1800:00 ___ 55% | | 22% | 12% | 10% 0
3 12/03/18 03:00 78% L] 21% 0% 0% 1
E 10 12/03/18 06:00 83% [ 8% [ 1% 7% 0
] 12/03/1809:00 [ 97% || 3% 0% 0% 0
5 12/03/18 12:00 98% | 2% 0% 0% 0
0 ! 12/03/18 18:00 8% || 2% 0% 0% 0
12/03/18 21:00 98% | 1% 0% 0% 0



Powerful tool, but better if used by Power System experts

Realize that 80% of the effort is pre-processing, clearing and
synchronizing data

Data structures and extremely important for efficient usage and reuse in
multiple applications

Realise that the same data could be used in different problems. Cascading
of models is very usual in power system forecast.

Most of the cases we need to integrate societal and environmental
behaviour with physical laws, is not only a data analysis

Study the characteristics of the problem and try to apply ML toll that best
fits the objective and requirements

If possible, do your own ML tools adapted to the problem you are solving
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