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CONTEXT

I



BUSINESSES WANT TO MOVE BEYOND PURE ANALYTICS USE CASES

Analytics is great, and of course, ML extends this

But insights, graphs and reports don’t have to be 
the end product.

Cognitive Computing uses ML components in a 
larger system or automated process.



GREAT COGNITIVE USE CASES ARE BEING EXPLORED  
RIGHT NOW…

Systems that: 
• Replace static logo images across 1000s of hours of video 

content

• Add subtitles to video dialogue on the fly, in a different language

• Give customer service agents the expert answers they need, 

moment by moment, by following along and understanding the 
call


• Route scattered police forces to areas of possible crime based 
on crime stats and global twitter activity


• Classify, rank, resolve and route IT helpdesk queries as they 
come in

https://github.com/Ellerbach/SharePointBot  
https://github.com/karolzak/Support-Tickets-Classification 

https://github.com/Ellerbach/SharePointBot
https://github.com/karolzak/Support-Tickets-Classification


BUT MANY WILL NEVER GO LIVE.



PRODUCTIONISATION 
PROBLEMS
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BUSINESSES DO NOT EXPECT SYSTEMS  
TO PERFORM POORLY ON LAUNCH DAY.



INTEGRATING ML INTO LIVE SYSTEMS & PROCESSES IS HARD.

Cognitive systems are:

• Hard for business stakeholders to understand 
• Hard to maintain without specialist ML skillsets 
• Hard to maintain… in general.



SIMPLIFIED SUPERVISED LEARNING LIFECYCLE

• This process repeats on a continuous basis, but mostly training / testing is in a non-live environment

• Parts of the process can be automated, but some data science expertise is required somewhere

• The system won’t improve itself



BUSINESS WORRIES FOR COGNITIVE

It’s hard for business folks to understand that… 
• The system will make mistakes that cannot be easily debugged

• The re-training process typically involves regressing stuff that used to work OK

• Training and improvement is broadly boundless and ongoing

• You can’t just correct all the system’s mistakes and add all the right answers to 

the training set

???
• How can we specify a useful backlog of ‘features’ for machine learning?

• How can we estimate how long development / experimentation  will take?

And that’s before we get onto… 
• Nuances of unsupervised and reinforcement learning lifecycles

• Human disagreement over expected behaviour



WHY DO WE NEED ML SPECIALISTS IN THE ‘LIVE’ TEAM?

• Hard to run something if you don’t understand how it works 
or what it does (obviously)


• Need to respond quickly to issues and new requirements 
on the live system


• Need to continuously improve performance & tune models

• …all without overfitting, regressing or breaking the model.

CONTINUOUS IMPROVEMENT OF A LIVE COGNITIVE SYSTEM REQUIRES 
A UNIQUE AND CROSS-FUNCTIONAL ML SKILLSET.



WHY IS MAINTENANCE STILL DIFFICULT WITH EMBEDDED SPECIALISTS?

• Data scientists and software engineers have different backgrounds, mindsets, specialisations, skills,  
…and often conflicting priorities.


• Focus on iterating really fast to test, adjust, optimize and retest until hypothesis sufficiently dis/confirmed

• …so writing production grade code to high engineering standards is logically low down on the DS agenda.  

Prototypes are not meant to be production-grade, after all.

Our goal is to create functioning prototypes.  
Someone else will productionise and run them.



GETTING TO PROD

III



THE INDUSTRY IS CLOSING THE GAP BETWEEN THE DS LAB  
& REAL-WORLD DEPLOYMENTS

SaaS products continue to emerge to streamline the process of getting models live, at 
all levels of abstraction


• Complete cloud-based ML workbench environments

• Experiment, ML training and data versioning pipelines

• ‘ML as a service’

• Black box ML APIs

All of these products are grasping at the problem of how to productionise 
Machine Learning.

…and 100s of other platforms & vendors



BUT LIFECYCLE TOOLS RARELY SOLVE  
PEOPLE & PROCESS PROBLEMS

(LIKE THE PROBLEMS WE’RE EXAMINING NOW)



THE DEVOPS ORIGIN STORY

Once upon a time, IT Development teams used to write code and 
throw it at IT Operations teams to deploy and run.

• The developers were motivated to build cool things really fast

• The operators were motivated to keep things running and stable  

for as long as possible 

The two groups did not get on very well. 
• Their priorities often conflicted – stability vs. rapid innovation

• They had different backgrounds, mindsets, specialisations and 

skills

Then one day they discovered DevOps, which was a way they could work together and share their priorities…



LESSONS FROM DEVOPS

Everyone agreed that building cool things fast was important,  
but it was only sustainable by:

• Committing to high code quality and continuous improvement

• Building against production-like environments

• Extensive automated testing and TDD/BDD

• Sophisticated monitoring, alerting and self-healing capabilities,

• Resilience, security and availability built in up front


They were able to agree on these shared priorities because they worked closely together 
towards a shared goal. 
(And they all lived happily ever after etc. etc.)

THIS IS ALSO A RECIPE FOR GETTING COGNITIVE SYSTEMS INTO PRODUCTION.
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CD PIPELINES FOR COGNITIVE SYSTEMS
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INCREASING MAINTAINABILITY BY ADOPTING CI/CD PRACTICES

IMPLEMENT UNIT TESTS Automated testing of small sections of code helps prevent unintended variables

STRONG VERSION CONTROL Library code - but also notebooks, experiments, datasets, tests, pipelines…

CODE REVIEW Helps the team share expertise and define a common standard

AUTOMATED DATA PREP Configure an automated data pipeline to help provision, cleanse and partition your datasets

FREQUENT E2E TESTING Expand your horizons to cover a sample of full-stack use cases, and test against them frequently.

CODE FOR PRODUCTION Notebooks are great, but at some point your code needs to become a reusable library

PLAN FOR MONITORING Validating the behaviour of the live system will be a statistical exercise in itself using ‘secondary’ 
data sources, and can feed into the experimental process

PROD-LIKE ENVIRONMENTS Write your models into Docker containers: write once, run anywhere



WHAT ABOUT HELPING THE BUSINESS?

???



E2E TESTING IS KEY BUT REQUIRES INNOVATION

• Keeping track of desired behaviour should be 
high on any Product Owner’s agenda


• But exhaustively specifying behaviour is counter-
productive, unmanageable and unrealistic


• Focus on key scenarios and write black box test 
scripts 


• These test expected behaviour from user’s 
perspective


• This helps the business get to grips with what you 
are building and articulate acceptance criteria 

(…though you may need a custom testing setup.)

- customer: "Hi I need to renew my motor policy" 
- bot: "Hello ${customerName}, thanks for contacting us!” 
- bot: “Before we start, please can you confirm I’m talking to the account 
holder?" 
- customer: "Yes" 
- bot: "Great, thank you." 
- bot: "Just to confirm, is this the policy you’re asking about? ${policyNumber} 
- customer: "Yes that’s right" 
- bot: ”Thank you. Let me just check your renewal premium 
- bot: ”Ok, the premium is £${renewalPremium}" 
- customer: ”Ok.” 
- bot: ”Please follow this link to our payment portal to complete the renewal:   
    ${transactionDeeplink}” 



TAKE THE SHORTEST PATH TO VALUE.

DO
• Pick a well-bounded problem domain where you know data will be available

• Stay close to the end users and operators and think carefully about UX

• Consider pre-built, SaaS and open source components (models, integrations, everything) to limit your toil

• Get something into the hands of your stakeholders ASAP, and focus their attention on the ML aspects

• Start planning how you will ramp up volumes of real data from day 1 of working on the PoC

Quickly delivering a valuable PoC increases its chances of survival in the wild.

DON’T
• Confuse production-readiness with perfection

• Try and design the thing by committee

• Expect to pass launch without any business change



CONCLUSION
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REMEMBER.

• Cognitive systems are hard for business stakeholders to understand 
… but much easier with reference to E2E tests and an early prototype

• Cognitive systems are hard to maintain without specialist ML skillsets 
… so scientists and engineers need a shared goal & common priorities

• Cognitive systems are hard to maintain anyway 
…  but DevOps engineering techniques will ease the Path to Production.
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