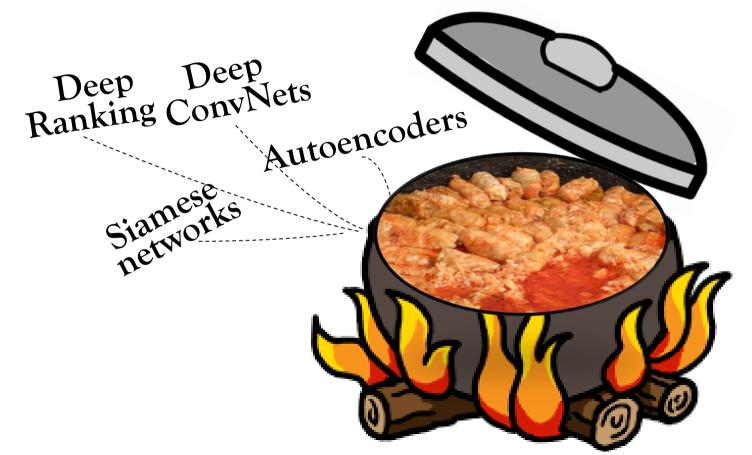


Computer Vision for Fraud detection

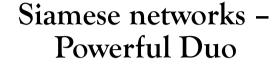
Bucharest, 6th June, 2019

Katarina Milosevic Ioana Gherman How to cook good image similarity?



Autoencoders - Siamese networks - Deep Ranking

Autoencoders – One Man Show

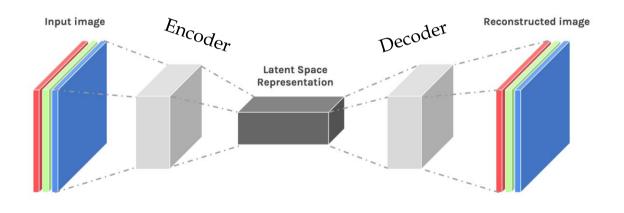


Deep Ranking – Triplets power



Autoencoders - One Man Show

Autoencoders

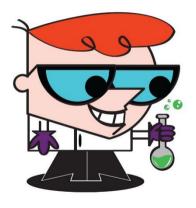


Pros: We don't need to label the data

Cons: Autoencoders learn "blindly" - do not focus on what we are interested in

Autoencoders - One Man Show

Autoencoders



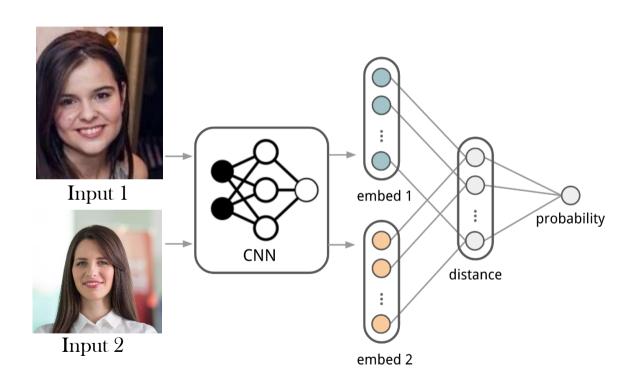
Input images

Output images

Similarity of *query image* calculated on *encoded images*

Siamese networks – Is it the same person?

Siamese network



Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese neural networks for one-shot image recognition." ICML deep learning workshop. Vol. 2. 2015.

Siamese networks – Damage similarity

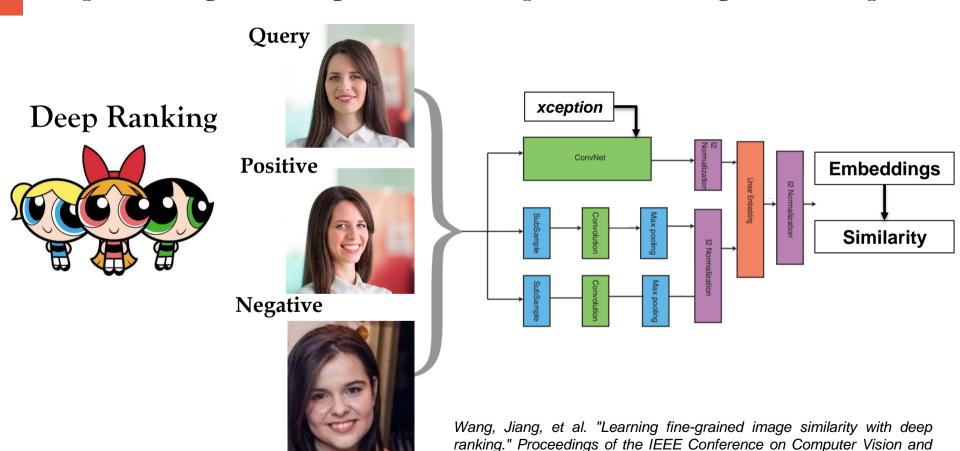
Siamese network

1 - same damage

Pros: Recognizes if the instances are from the same collection

Cons: Hard to teach the model to focus on the damage itself

Deep Ranking - Distinguish between positive and negative example



Pattern Recognition. 2014.

Deep Ranking-Distinguish between same/different damage

Positive

Negative

Pros: Loss is calculated taking into account both positive and negative instance for each input => Model learns how to recognize positive and negative examples for the given input image

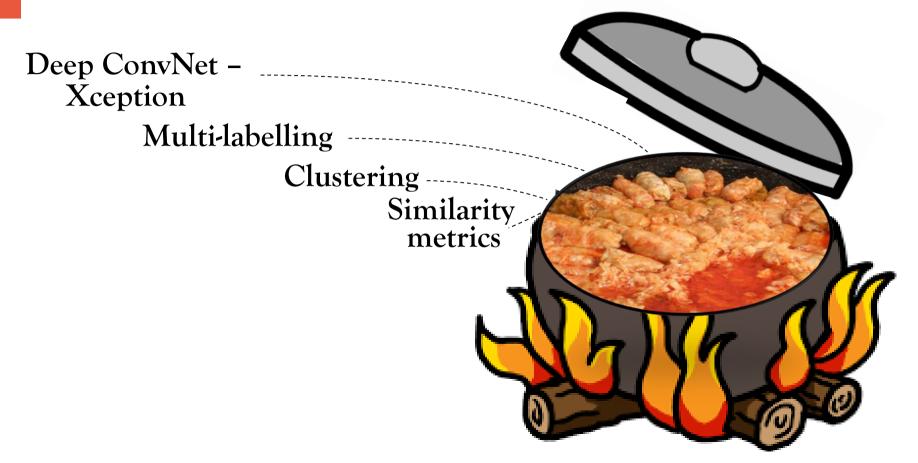
Cons: Construction of the training dataset, Evaluation of the model

Deep Ranking – Distinguish between same / different damage

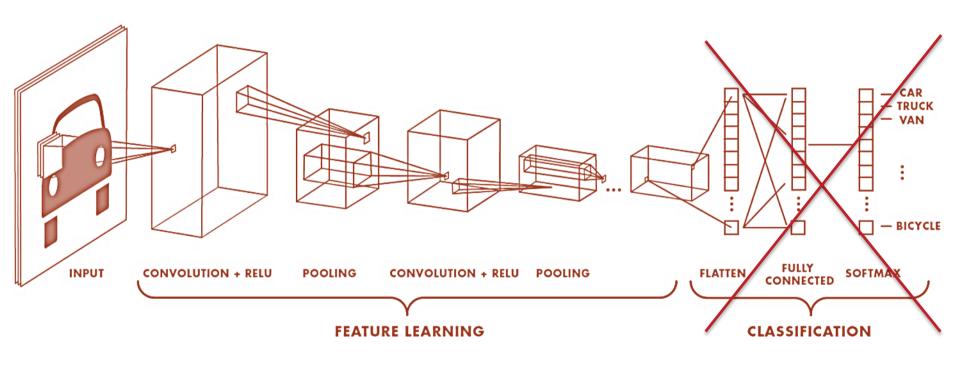
1 - same damage

0 - not the same damage

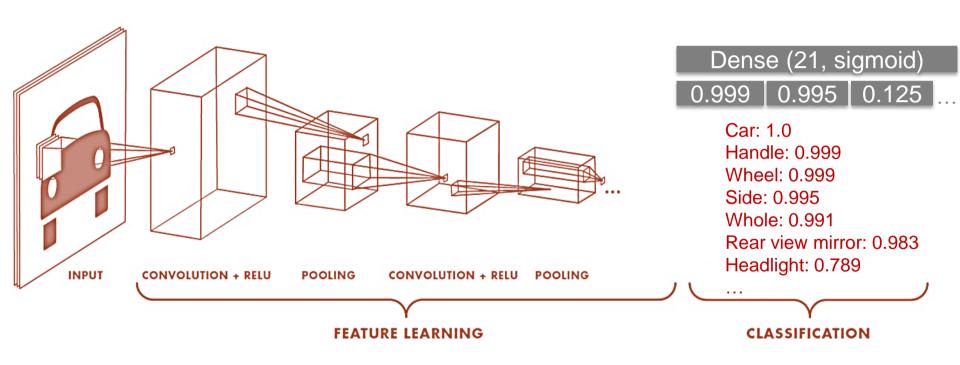
How to cook good image similarity? Brand new recipe!



Extracting features with Xception



Predicting multi-labels based on xception features



Which car parts do you see in this image?

Car : 0.999 Side : 0.995 Handle : 0.894 Rear view mirror : 0.582 Wheel : 0.267

Cluster images based on multi-label probabilities

Multi-labels

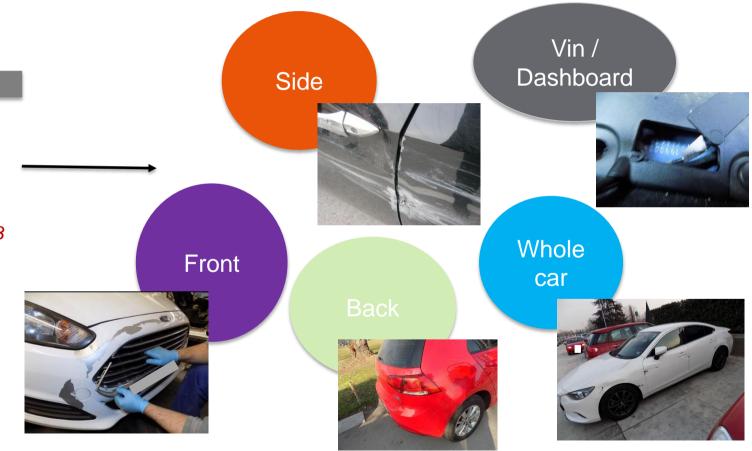
Car: 1.0

Handle: 0.999 Wheel: 0.999 Side: 0.995 Whole: 0.991

Rear view mirror: 0.983

Headlight: 0.789

. . .



Find the most similar images inside the cluster

Front

Cosine similarity of xception embeddings of 2 photos: 0.81

Claim 1 Claim 2

Eliminate symmetric pairs

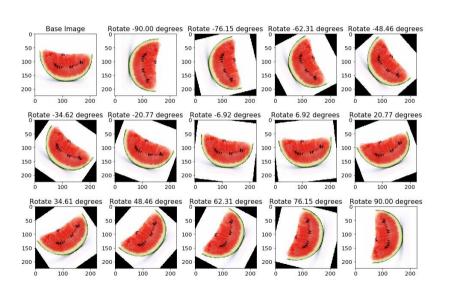
Front

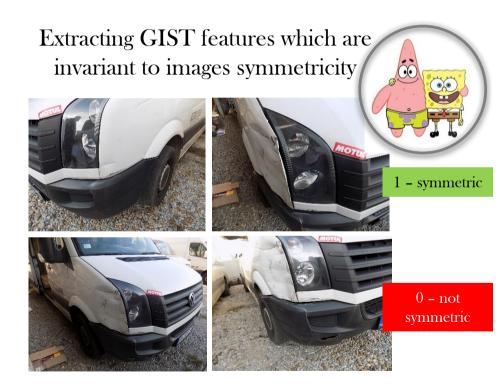
Cosine similarity of xception embeddings of 2 photos: 0.71

Claim 1 Claim 2

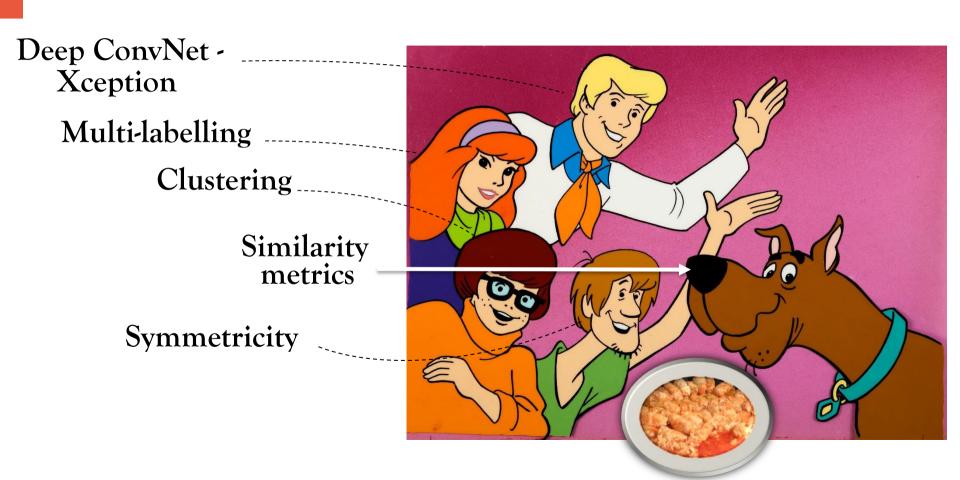
Eliminate symmetric pairs - Neural network on Gist features

Xception was trained with image augmentation





How to cook good image similarity? Winning recipe!



Thank You.

Contacts:

Ioana.Gherman@generali.com Katarina.Milosevic2@generali.com

